您目前的位置: 首页» 师资队伍» 副教授|高级实验师

时晨

个人简历

  时晨,首都师范大学,资源环境与旅游学院,副研究员

   

  个人简介

  学历:博士

  职称:副研究员

  籍贯:江苏徐州

  方向:遥感方法、生态环境遥感

  Email:shichen0516@outlook.com

   

  教育经历

  2009/9–2015/9, 纽约州立大学布法罗分校, 地理, 博士

  2007/9–2009/6, 武汉大学, 摄影测量与遥感, 硕士

  2003/9–2007/6, 武汉大学, 遥感科学与技术, 学士

   

  工作经历

  2017/1-至今,首都师范大学,资源环境与旅游学院,副研究员

  2015/9-2016/12,首都师范大学,资源环境与旅游学院,讲师

   

  期刊论文

  (1) Tian, J.Y., Wang, L., Li, X.J., Shi, C., & Gong, H.L. (2017). Differentiating Tree and Shrub LAI in a Mixed Forest With ICESat/GLAS Spaceborne LiDAR. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 87-94

  (2) Shi, C., & Wang, L. (2016). Linear Spatial Spectral Mixture Model. IEEE Transactions on Geoscience and Remote Sensing, 54(6), 3599-3611

  (3) Wang, L., Shi, C., Diao, C.Y., Ji, W.J., & Yin, D.M. (2016). A survey of methods incorporating spatial information in image classification and spectral unmixing. International Journal of Remote Sensing, 37(16), 3870-3910

  (4) Jacquez, G.M., Sabel, C.E., & Shi, C. (2015). Genetic GIScience: Toward a Place-Based Synthesis of the Genome, Exposome, and Behavome. Annals of the Association of American Geographers, 105(3), 454-472

  (5) Jacquez, G.M., Shi, C., & Meliker, J.R. (2015). Local Bladder Cancer Clusters in Southeastern Michigan Accounting for Risk Factors, Covariates and Residential Mobility. Plos One, 10(4), 16

  (6) Shi, C., & Wang, L. (2014). Incorporating spatial information in spectral unmixing: A review. Remote Sensing of Environment, 149, 70-87

   

  主持或参加科研项目情况

  (1) 国家自然科学基金青年科学基金项目,41601363,结合空间信息的混合像元分解方法研究,2017/01-2019/12,在研,主持

  (2) 美国国家医学图书馆项目,R21LM011132,Exploratory Evaluation of Homomorphic Cryptography For Confidentiality Protection,2012/03-2015/03,已结题,参与

  (3) 美国国家癌症研究所项目,R44CA135818,Case-Only Cancer Clustering For Mobile Populations,2009/06-2014/06,已结题,参与

  (4) 美国自然科学基金项目,0822489,Collaborative Research: Improving Small Area Population Estimation with High-Resolution Remote Sensing,2008/07-2013/01,已结题,参与

  (5) 美国自然科学基金项目,0810933,Collaborative LTREB: Experimental and Observational Studies of Mangrove Forest Structure and Gap Dynamics,2007/09-2011/09,已结题,参与

   

  学术奖励

  (1) Shi, C.,American Association of Geographers Remote Sensing Specialty Group Student Honors Paper Award,American Association of Geographers,Student Honors Paper Competition,2nd Place,2015

  (2) Shi, C.,UNESCO Chair Young Scholar Summit Student Paper Award,UNESCO Chair in Hydroinformatics for Ecohydrology,Student Paper Award,2nd Place,2012

   

  学术会议报告

  (1) Shi, C., & Wang, L. (2016) “Evaluating the Usability of Spatially-Interpolated Endmembers for Spectral Mixture Analysis with Imaging Spectroscopy.” AGU Fall Meeting, San Francisco, California

  (2) Shi, C., & Wang, L. (2016) “A linear spatial spectral mixture model for the improved estimation of abundances.” Annual Meeting of the Association of American Geographers, San Francisco, California

  (3) Shi, C., & Wang, L. (2015) “A Linear Spatial Spectral Mixture Model for the Improved Estimation of Subpixel Saltcedar Cover along the Forgotten River.” AGU Fall Meeting, San Francisco, California

  (4) Shi, C., & Wang, L. (2015) “Spatial statistical detection of homogeneous regions for remotely sensed imagery.” Annual Meeting of the Association of American Geographers, Chicago, Illinois

  (5) Shi, C., & Wang, L. (2014) “Incorporate spatial dependence in spectral unmixing: A case study of invasive saltcedar along the Forgotten River.” Annual Meeting of the Association of American Geographers, Tampa, Florida

  (6) Shi, C., & Wang, L. (2012) “Incorporating spatial information in spectral unmixing: A review.” Annual Meeting of the Association of American Geographers, New York, New York

   

  课程教学

  首都师范大学

  • 遥感原理与方法(英文)
  • 数字图像处理
  • Data Integration(英文)

   

  纽约州立大学布法罗分校

  • Earth Systems Science II: Climate Change Laboratory(英文)
  • Cartography Laboratory(英文)

   

  期刊审稿

  IEEE Transactions on Geoscience and Remote Sensing

  IEEE Geoscience and Remote Sensing Letters

  International Journal of Remote Sensing

  Remote Sensing Letters